foormusique.biz: Moving Grate Incineration The Most Common WTE Technology
Untung99 menawarkan beragam permainan yang menarik, termasuk slot online, poker, roulette, blackjack, dan taruhan olahraga langsung. Dengan koleksi permainan yang lengkap dan terus diperbarui, pemain memiliki banyak pilihan untuk menjaga kegembiraan mereka. Selain itu, Untung99 juga menyediakan bonus dan promosi menarik yang meningkatkan peluang kemenangan dan memberikan nilai tambah kepada pemain.
Berikut adalah artikel atau berita tentang Harian foormusique.biz dengan judul foormusique.biz: Moving Grate Incineration The Most Common WTE Technology yang telah tayang di foormusique.biz terimakasih telah menyimak. Bila ada masukan atau komplain mengenai artikel berikut silahkan hubungi email kami di [email protected], Terimakasih.
Incineration is the most popular waste treatment method that transforms waste materials into useful energy. The incineration process converts waste into ash, flue gas, and heat. The type of thermal WTE technology most commonly used worldwide for municipal solid waste is the moving grate incineration. These moving grate incinerators are even sometimes referred to as as the Municipal Solid Waste Incinerators.
There are more than 1500 Waste-to-Energy plants (among 40 different countries) there is no pre-treatment of the MSW before it is combusted using a moving grate. The hot combustion gases are commonly used in boilers to create steam that can be utilized for electricity production. The excess energy that can’t be used for electricity can possibly be used for industrial purposes, such as desalination or district heating/cooling.
Benefits of Moving Grate Incineration
The moving grate incineration technology is lenient in that it doesn’t need prior MSW sorting or shredding and can accommodate large quantities and variations of MSW composition and calorific value. With over 100 years of operation experience, the moving grate incineration system has a long track record of operation for mixed MSW treatment. Between 2003 and 2020, it was reported that at least 200 moving grate incineration plants were built worldwide for MSW treatment. Currently, it is the main thermal treatment used for mixed MSW.
Compared to other thermal treatment technologies, the unit capacity and plant capacity of the moving grate incineration system is the highest, ranging from 10 to 920 tpd and 20 to 4,300 tpd. This system is able to operate 8,000 hours per year with one scheduled stop for inspection and maintenance of a duration of roughly one month.
Today, the moving grate incineration system is the only treatment type which has been proven to be capable of treating over 3,000 tpd of mixed MSW without requiring any pretreatment steps. Being composed of six lines of furnace, one of the world’s largest moving grate incineration plants has a capacity of 4,300 tpd and was installed in Singapore by Mitsubishi in 2000
Working Principle
Moving grate incineration requires that the grate be able to move the waste from the combustion chamber to allow for an effective and complete combustion. A single incineration plant is able to process thirty-five metric tons of waste per hour of treatment.
The MSW for a moving grate incinerator does not require pretreatment. For this reason, it is easier to process large variations and quantities. Most of these incineration plants have hydraulic feeders to feed as-received MSW to the combustion chamber (a moving grate that burns the material), a boiler to recover heat, an air pollution control system to clean toxins in the flus gas, and discharge units for the fly ash. The air or water-cooled moving grate is the central piece of the process and is made of special alloys that resist the high temperature and avoid erosion and corrosion.
Working principle of a grate incinerator
The waste is first dried on the grate and then burnt at a high temperature (850 to 950 degrees C) accompanied with a supply of air. With a crane, the waste itself is emptied into an opening in the grate. The waste then moves towards the ash pit and it is then treated with water, cleaning the ash out. Air then flows through the waste, cooling the grate. Sometimes grates can also be cooled with water instead. Air gets blown through the boiler once more (but faster this time) to complete the burning of the flue gases to improve the mixing and excess of oxygen.
Suitability for Developing Nations
For lower income and developing countries with overflowing landfills, the moving grate incinerator seems suitable and efficient. Moving grate incineration is the most efficient technology for a large-scale mixed MSW treatment because it is the only thermal technology that has been able to treat over 3,000 tons of mixed MSW per day. It also seems to be considerably cheaper than conventional technologies.
Compared to other types of Waste-to-Energy technologies, this type of system also shows the highest ability to handle variation of MSW characteristics. As for the other incineration technologies like gasification and pyrolysis technologies, these are either limited in small-scale, limited in material for industrial/hazardous waste treatment, requiring preprocessing of mixed MSW before feeding, which make them not suitable for large-scale mixed MSW treatment.
Conclusion
For the reduction of significant waste volume, treatment using a moving grate incinerator with energy recovery is the most common waste-to-energy technology. The moving grate’s ability to treat significant volumes of waste efficiently, while not requiring pre-treatment or sorting is a major advantage that makes this suitable for developing countries.
This technology could provide many other benefits to such nations. Implementing moving grate incinerators is most suitable for developing nations because not only will it reduce waste volume, but it would also reduce the demand for landfills, and could recover energy for electricity.
References